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We study the relaxation of force distributions in the q-model, assuming a
uniform q-distribution. We show that ‘‘diffusion of correlations’’ makes this
relaxation very slow. On a d-dimensional lattice, the asymptotic state is
approached as l (1−d)/2, where l is the number of layers from the top. Further-
more, we derive asymptotic modes of decay, along which an arbitrary short-
range correlated initial distribution will decay towards the stationary state.
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1. INTRODUCTION

To answer basic questions with simple models is the favorite topic in the
work of Bob Dorfman. This contribution, dedicated to him on the occasion
of his 65th anniversary, concerns the force relaxation in a model for gra-
nular media. The model is certainly simple but whether the question we
answer is a basic one, we leave to his judgment.
The first idealization of granular media is to consider them as a pack

of equally sized beads. The second idealization is to put the beads on a
regular lattice, with periodic boundary conditions horizontally in order to
avoid boundary effects. The problem is the propagation of the force
exerted on the top layer downwards to the deep lower layers of the bead
pack. Now it might seem that all randomness, characteristic for granular
media, has been lost in this idealization. However the forces which the
beads exert on each other are supposed to be transmitted in a random way.
Let fi be the force in the downward direction on the ith bead in a layer.
This bead makes contact with a number of z beads in the layer below,
which we indicate by the indices i+a. The a’s are displacement vectors in
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Fig. 1. The displacement vectors a in the q-model for (a) the triangular packing (side view)
and (b) the fcc packing (top view).

the lower layer as shown in Fig. 1(a) for a 2-dimensional triangular packing
and in Fig. 1(b) for a 3-dimensional fcc packing. Bead i transmits a frac-
tion qai of the force fi to the bead i+a underneath it. The random element
in the model is that the fractions qai are taken stochastically from a uniform
distribution satisfying the constraint

C
a

qai=1. (1)

This is the q-model as introduced by Liu et al. (1) The problem we consider
is: given the force distribution P0(f1,..., fN) in the top layer, what is the
force distribution in the lower layers and in particular how does the distri-
bution approach its asymptotic value? Recent studies (2, 3) addressed the
relaxation of the second moments for general q distributions on a trian-
gular lattice. Restricting ourselves to the uniform q distribution, we inves-
tigate the relaxation of the full distribution for arbitrary lattices.
In order to write the equation for the force distribution we consider

the force f −j on the jth bead in layer. It is composed of forces fj−a from the
layer on top of it as

f −j=C
a

qaj−afj−a. (2)

We have left out the so-called injection term representing the weight of the
particles.2 As a consequence of the regularity of the lattice, a bead is sup-

2 Leaving out the injection term is legitimate when the applied force is large compared to the
particle weight or when the direction of propagation is perpendicular to gravity.

ported by z beads in the next layer and reciprocally a bead in the lower
layer also has z beads pressing on it. Note that, due to the fluctuations in
the q’s, the sum over the qaj−a in (2) does not add up to 1, which means that
even a set of equal fj−a will lead to fluctuations in the f

−

j.
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The transformation of the force distribution from one layer to the next
layer can be written as

PŒ(fFŒ)=F dfF F DqFD
j
d 1 f −j−C

a

qaj−afj−a 2 P(fF), (3)

where we have introduced a vector notation for the forces in one layer
fF=(f1,..., fN), and for the integrations we use the abbreviations

F dfF=D
i
F
.

0
dfi, F DqF=D

i
F Dqi=D

i
(z−1)!D

a

F
1

0
dqai d 1C

aŒ

qaŒi −12 .
(4)

As one sees from the integration over the qai , we have taken a uniform and
normalized distribution over these stochastic variables. The restriction to a
uniform q-distribution simplifies the mathematics while it still reproduces
important experimental observations. (4)

The recursive relation (3) between two successive layers contains the
problem of force relaxation from top to bottom of the bead pack. For a
number of properties it is more convenient to work with the Laplace trans-
form of the distribution,

P̃(sF)=F dfF exp(−sF ·fF) P(fF). (5)

The Laplace transform of (3) leads to

P̃Œ(sF)=F DqF F dfF exp 1 −C
j

C
a

sjq
a
j−afj−a 2 P(fF). (6)

The sum in the exponent can be rewritten as

C
j

C
a

qaj−a sjfj−a=C
i

1C
a

qai si+a 2 fi, (7)

by changing the summation variable j to i=j−a. So we can express the
right hand side of (6) also in the Laplace transform and we get

P̃Œ(sF)=F DqF P̃(sF(qF)), (8)
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with

si(qF)=C
a

qai si+a. (9)

The projection of the full distribution P(fF) to the single-site force distri-
bution p(fi) is particularly simple in the Laplace language

p̃(si)=P̃(0,..., 0, si, 0,..., 0), (10)

since sl=0 means a full integration over fl.
Either (3) or (8) completely defines the propagation of the forces for

boundary conditions (N, M), where N is the number of sites in a layer and
M the number of layers, (both assumed to be large). For the ultimate
asymptotic behavior one has M±N, but the N±M case is physically
more relevant and therefore the main focus of this paper. It is also not
sensitive to the (periodic) boundary conditions that we have chosen.
Coppersmith et al. (5) derived a stationary state of (3),

Pg(fF)=D
i
pg(fi) , pg(f)=zzfz−1 exp(−zf)/(z−1)!. (11)

It is a product state without any correlation between sites. They provided
numerical evidence that it is indeed the asymptotic force distribution. This
paper concerns the decay towards the stationary state, which turns out
to be algebraic rather than exponential, as is implicit in ref. 5. We will
show how ‘‘diffusion of correlations’’ accounts for this slow relaxation.3

3 This diffusion in correlation space should not be confused with the diffusion in real space
due to a localized force on the top surface. (6, 7) The main focus of this paper will be on
homogeneous initial conditions, for which the first moments are equal on all sites.

Furthermore, we will pay attention to the question of which initial distri-
butions evolve to the stationary state (11) and in what sense the approach
has to be understood.
The first part of this paper deals with the decay of the distribution on

the level of its moments. We start out by showing that the distribution of
the total force in a layer is invariant under the recursion. Then we illustrate
the propagation of forces in the system by considering the evolution of the
first few moments of the force distribution. In the second part of this paper
we construct solutions of the recursion relations, which dominate the
asymptotic decay towards the stationary state (11), with an emphasis on
the relaxation of the single-site force distribution. In the concluding
remarks we comment on the results that we have obtained and discuss
which of these can be generalized to arbitrary q distributions.

452 Snoeijer and van Leeuwen



2. THE DISTRIBUTION OF TOTAL FORCE

There is one obvious invariant in the problem: the total force on the
particles of one layer

F=C
i
fi. (12)

This can be seen by summing (2) over all j

FŒ=C
j
f −j=C

j, a
qaj−afj−a=F, (13)

and again changing the summation variable j to i=j−a. The magnitude of
F is irrelevant for the problem since, due to the linearity of the force law
(2), an overall scaling of the forces is possible without changing the physics
of the problem. Thus we could fix the value of F and only consider distri-
butions having strictly this value, but that is mathematically not very con-
venient. The distribution of the total force is obtained from the distribution
of the forces as

R(F)=F dfF d 1F−C
i
fi 2 P(fF). (14)

Since relation (13) holds for any set of q’s, one finds from (3) that R(F) is
invariant.
So the initial distribution R (0)(F) dictates that of the asymptotic state.

This seems a strong restriction on the relaxation of the distribution func-
tion, but in practice it is rather a warning on what quantities to inspect. As
an example consider the total force distribution of the stationary state (11),
which reads

Rg(F)=zNFzN−1 exp(−zF)/(zN−1)!. (15)

It is a sharp distribution with a mean and variance

OFP=N, OF2P−OFP2=N/z. (16)

Note that fixing the total force F excludes (11) as the stationary state! Since
the distribution (11) implies a finite variance of the total force, it cannot
correspond to an initial distribution in which the total force has a precise
value and thus zero variance. Of course, distributions with zero variance of

Force Relaxation in the q-Model for Granular Media 453



the total force cannot be constructed as superpositions of distributions of
the type (11). The distribution (15) is very reminiscent of the energy distri-
bution in the canonical ensemble. Indeed this analogy, also mentioned in
ref. 5, is illuminating. For large N the total force distribution (15) is
narrow, in the same way as the total energy distribution in the canonical
ensemble. Now it is well known that the correlation functions of the
canonical ensemble and the micro-canonical ensemble (in which the energy
is fixed), coincide for all distances (to order 1/N). But integrals over
the correlation functions over all distances differ in the two ensembles.
A similar subtlety arises here. As long as we consider spatial correlations
between forces, the distribution of the total force is unimportant, if it is
sharp in the sense of (16). However, for sums over the correlations, differ-
ences will appear. Consider for instance the force correlations between two
sites, defined as

Ofifi+nP=F dfF fifi+n P(fF). (17)

Summing Ofifi+nP over i and n yields

C
i, n

Ofifi+nP=F dfF C
i, n
fifi+n P(fF)=OF2P. (18)

If F is allowed to fluctuate, this sum clearly differs from the result obtained
for fixed values of F. The fluctuations which we allow in the total force are
limited to

OF2P−OFP2=cN, (19)

with c of order 1. Then they are unimportant in the thermodynamical limit.

3. DIFFUSION OF THE FIRST MOMENT

Forces applied to one bead in the top layer will diffuse into a wider
region in the lower layers. (6, 7) To see this, consider the first moments OfjP
of the distribution for an inhomogeneous initial distribution. The relaxa-
tion of these moments is given by

OfjPŒ=F dfF F DqF C
a

qaj−afj−aP(fF)=F DqF C
a

qaj−aOfj−aP. (20)
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Integrals over the qŒ’s are elementary, but this one is trivial as each qaj−a
gives the same answer, and with (1) it must be equal to 1/z. So the result
becomes

OfjPŒ=
1
z
C
a

Ofj−aP. (21)

This simple recursion law tells us that a distribution with only a non-
vanishing moment on one site in the top layer gradually spreads over the
lower layers like a diffusion process.
In order to understand the role of system size it is useful to inspect the

fourier transform

m(k)=C
i
OfiP exp(ik · ri), (22)

which relaxes from layer to layer as

mŒ(k)=l(k) m(k), (23)

with the transmission function

l(k)=
1
z
C
a

exp(ik · ra). (24)

In accordance with the conservation of the total force we see that the
mode k=0 is conserved as l(0)=1. All the other modes decay exponen-
tially since |l(k ] 0)| < 1. So we find asymptotically

m (.)(k)=dk, 0m(0), (25)

with m(0) the average of the (initial) total force. Translating it back to
space yields

OfiP (.)=OFP/N, (26)

i.e., all sites feel the same average force regardless of the initial distribution.
Clearly this result holds in the limit M±N. In the other limit

N±M we may replace the summation over k by an integration over the
Brillouin Zone (BZ) of the layer and one gets the standard diffusion
process from the integral

OfjP (M)=
1
VBZ

F
BZ
dk m(k) exp[M log(l(k))− ik · rj]. (27)
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In the limit of large M the integral can be evaluated by the saddle point
method, using the fact that the dominant contribution comes from small k.
This allows us to approximate l(k) by

log[l(k)] 4 log 51−C
a

(k · ra)2/26 4 −Dk2, (28)

which renders the integration effectively a Gaussian. The diffusion constant
D depends on the latttice structure of the layer, with D=1/8 for the
triangular packing and D=1/12 for the fcc packing. Thus one sees that
the ratio ofM/N decides whether we should take a discrete sum over the k
variables (M±N) or whether we should integrate over the Brillouin Zone
(N±M). In the first case, only k=0 matters and we have diffusion
crossing the periodic boundary conditions in the layer. In second case,
a region around k=0 has an influence and there are no effects from the
finite size of the layer.
Having seen the washing out of spatial inhomogeneities by diffusion,

we now concentrate on translational invariant initial conditions and on the
case N±M.

4. EVOLUTION OF THE SECOND MOMENT

As we are free to put OfiP=1, the relaxational properties show up
only in the higher moments of the force distribution. We therefore examine
how these moments evolve under the recursion. The transformation of
second moments Ofifi+nP is obtained by combining (17) and (3) as

Ofjfj+nPŒ=C
a, aŒ

1F DqF qaj−a qaŒj+n−aŒ 2 Ofj−afj+n−aŒP. (29)

The q-integrals can be worked out and yield

F DqF qaj−a qaŒj+n−aŒ=
1
z2
+1 − 1

z2(z+1)
+
da, aŒ

z(z+1)
2 d0, n+a−aŒ. (30)

Inserting this into (29) gives the following recursion scheme

Ofjfj+nPŒ=
1
z2

C
a, aŒ

Ofj−afj+n−aŒP+gnOf
2
jP. (31)
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The function gn incorporates all corrections due to the Kronecker d’s in
(30) and the only non-zero terms are

g0=
z−1
z(z+1)

, gc=−
1

z2(z+1)
. (32)

The index c denotes a nearest neighbor position. It is easily checked that
the difference of two unequal displacement vectors a and aŒ points to a
nearest neigbor position. It is a matter of counting to verify that correla-
tions of the type

Ofifi+nPg=C 11+1
z
d0, n 2 (33)

are fixed points of relation (31) for arbitrary C. This conclusion was also
derived by Lewandowska et al. (3) for the specific case of a 2-dimensional
triangular lattice and C=1, (corresponding to (11)). For C ] 1 one has
long-ranged correlations since, for large n, the average of the product does
not approach the product of the averages (set equal to 1). C is related to
the scale of the forces as one sees from (18). This relation implies for (33)

OF2Pg=C(N2+N/z). (34)

For a sharp distribution of the total force in the sense of (16) and nor-
malization of the average OFP=N, there is little room for C to differ
from 1, allowing only deviations of order 1/N. So we take C=1 corre-
sponding to the stationary state (11) and come back to the issue in the
Appendix.
To study the relaxation in more detail we consider the difference with

respect to values of the stationary distribution

An=Ofifi+nP−Ofifi+nPg, (35)

which will of course relax according to the same relation (31). As an
example, the flow diagram for the An is depicted in Fig. 2 for the triangular
lattice. The advantage of taking the difference is that its fourier transform
is well behaved for distributions which have only short range correlations,
since both the initial correlation function and the stationary values
approach 1 for large distances n. The fourier transforms are defined as

A(k)=C
n
An exp(ik · rn), An=

1
VBZ

F
BZ
dk A(k) exp(−ik · rn), (36)
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Fig. 2. The flow diagram for A (l)n in the triangular lattice, starting with only A
(0)
0 ] 0. The

horizontal index n indicates the relative distance.

and A(k) transforms as

AŒ(k)=l(k) l(−k) A(k)+A0 g(k). (37)

The correction function g(k) can be written as

g(k)=g0+C
c

gc exp(ik · rc)=
1
z+1

[1−l(k) l(−k)]. (38)

Note that A(0) is invariant, which implies

C
n
A −n=C

n
An, (39)

as it should be according to relation (18).
The recursion (37) can be solved by introducing the generating function

A(u, k)=C
l=0
A (l)(k) u l, (40)

where the sum extends over all layers l. Multiplying (37) by u l+1 and
summing over l gives an algebraic equation for the generating function

A(u, k)−A (0)(k)=u[l(k) l(−k) A(u, k)+A0(u) g(k)], (41)

where the auxiliary function A0(u) is defined as

A0(u)=C
l=0
A (l)0 u

l. (42)

A0(u) is our prime interest as it contains the center coefficients A
(l)
0 , giving

information about the relaxation of the single-site force distribution. The
other A (l)n contain correlations between two sites. Using (38), we write the
solution of (41) as

A(u, k)=
A (0)(k)

1−ul(k) l(−k)
+
1
z+1

A0(u)11−
1−u

1−ul(k) l(−k)
2 . (43)
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The first term will be shown to give purely diffusive behaviour. This can
be understood from the recursion of (31): without the corrections gn, it
becomes a regular random walk in a layer of dimension d−1. The second
term, which originates from the gn, contains a correction to the asymptotic
amplitude and a term (proportional to 1−u) representing a transient.
Hence, we anticipate diffusive relaxation ’ l (1−d)/2.
Using Eq. (36), the function A0(u) satisfies

A0(u)=
1
VBZ

F
BZ
dk A(u, k). (44)

Inserting expression (43) into (44) gives a closed equation for A0(u).
As we shall see, the large l behaviour is dominated by the behavior at

small k. We have assumed the initial correlation to be short-ranged such
that A (0)(k) is a regular function of k at the origin. Therefore we may as
well continue by considering first the uncorrelated initial distributions.
Then only the value n=0 gives a contribution and we have initially

A (0)(k)=A(0)0 , (45)

as depicted in Fig. 2. A (0)0 sets the overal amplitude of the relaxation
process.
Before discussing the asymptotics of the general case we begin by

giving the results for the triangular packing with z=2. In this case all the
integrals can be carried out explicitly by writing them as contour integrals
in the complex v=exp(ik) plane. For (44) and (43) we get

A0(u)=
A (0)0
`1−u

+
1
3
A0(u) 11−

1−u

`1−u
2 . (46)

This relation for A0(u) can readily be solved as

A0(u)=
A (0)0
`1−u
1 3

2+`1−u
2= 3A(0)0
2`1−u
11−1

2
`1−u+

1
4
(1−u)− · · · 2 .

(47)

We have made the expansion in powers of `1−u because each higher
term leads to a weaker singularity and therefore to a faster decay. Tracing
back these features to the form (43), we indeed see that the first term is
responsible for the leading singularity, that the second modifies the amplitude
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by a factor 3/2 and that the third leads to higher powers and thus to tran-
sient behavior. The leading singularity gives an expansion

1

`1−u
= C

.

m=0

1
22m
(2m)!
(m!)2

um. (48)

Note that these are precisely the binomial coefficients one expects from the
random walk described by the first term in (31). Using Stirlings formula for
the factorials yields as the leading term for the A l0

A l0 4
3A(0)0
2`pl

, lQ.. (49)

So we see that the singularity at u=1 contains the asymptotic behav-
iour. This is also true for the general case. Defining the integral

D(u)=
1
VBZ

F
BZ
dk

1
1−ul(k) l(−k)

, (50)

we get for A0(u)

A0(u)=A
(0)
0 D(u)+

1
z+1

A0(u) [1−(1−u) D(u)]. (51)

We again have not written the solution in closed form in order to see the
origin of the terms. The first term contains the diffusive singularity at
u=1. This follows from the integral for D(u) which develops a singular
denominator for u=1 at the point k=0. The type of singularity depends
on the dimension d−1 of the k integral and thus on the dimension of the
system. The singularity can be obtained by the saddle point method using
the approximation (28) for l(k) and reads (1−u) (d−3)/2, where the power 0
means a logarithm (for the fcc packing). Consequently the decay is as
l (1−d)/2 for large l. The other terms in (51) give a modification of the
amplitude by a factor (z+1)/z and a faster decay term (due to a weaker
singularity).
In setting (45) we have made the restriction to initial states in which

the second moments of the forces are uncorrelated. From the analysis it is
clear that for the asymptotics it is a justified substitution for any initial
state with short-ranged correlations. Thus the conclusion of this section is
that for arbitrary initial distributions with short-ranged initial correlations
the second moment of the force correlations relax towards the stationary
distribution (11). To be more precise, the approach is not perfect in view of
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the restriction (39). The values of all A (l)0 saturate at a level ’ A
(0)
0 /N when

l starts to exceed the value N2/(d−1). Then the diffusion of the initial devia-
tion goes around the periodic boundary conditions and the system will
approach a state (33) with C−1 of the order 1/N. This is the subtlety to
which we alluded in Section 2. The total sum over the An corresponds to

C
n
An=(OF2P−OF2Pg)/N, (52)

and when R (0)(F) is not perfectly equal to Rg(F), the system will never
fully relax to Pg(fF).

5. STATIONARY STATE AND SOME PROPERTIES

Coppersmith et al. (5) have determined a stationary state of Eq. (8),
which is special in the sense that it is a product of single-site distributions.
Since the proof of the stationary distribution is vital for the decay of
deviations, we briefly repeat its construction. It is based on the following
identity which holds for uniform q distributions (8)

F Dqi 1
1

1+l;a q
a
i ba
2z=D

a

1
1+lba

. (53)

Now if we apply this identity to the (normalised) distribution

P̃(sF)=D
i

1 1
1+lsi
2z, (54)

we see that each zth power of the factor splits up into z single powers of
the neighboring sites. The product over all sites in a layer then restores the
zth power of the denominator, which makes P̃(sF) an invariant. Putting
the mean force equal to 1 requires that l=1/z. So we have a stationary
distribution

P̃g(sF)=D
i
p̃g(si)=D

i

1 z
z+si
2z. (55)

Translating this back to the force distribution we get (11).
Further information is deduced by differentiation of the identity (53)

with respect to l giving

F Dqi
;a q

a
i ba

(1+l;a q
a
i ba)

z+1=
1
z
1D
a

1
1+lba
2 C
aŒ

baŒ
1+lbaŒ

. (56)
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This allows us to construct another invariant

P̃g
1 (sF)=P̃

g(sF) C
i

si
1+lsi

. (57)

Inserting this expression into the recursion relation (8), we encounter the
integral (53) for all sites, except for site i where we have to perform the
integral of the left hand side of (56). That produces for a set of surrounding
sites factors with the power z+1 and the numerics is such that adding them
together yields again a sum as in (57). It is not surprising that this addi-
tional invariant exists since we showed that (54) was invariant for arbitrary
l or scale of the forces. Thus the invariance of (57) is nothing else than
expressing this scale invariance of the recursion. In fact (57) follows directly
from differentiating (54) with respect to l.
It is tempting and indeed rewarding to continue to differentiate the

identity (53). Differentiation of (56) with respect to l yields

F Dqi
(;a qaba)2

(1+l;a qaba)z+2
=

1
z(z+1)
1D
a

1
1+lba
2 C
aŒ, aœ

baŒ(1+daŒ, aœ) baœ
(1+lbaŒ)(1+lbaœ)

.

(58)

Now the distribution

P̃(sF)=P̃g(sF) C
i

1 si
z+si
22, (59)

is not invariant since the right hand side of (58) produces terms with
powers z+1 of the denominator on two sites. We will show in next sections
that (59) leads to the ‘‘slowest mode’’ decaying towards to the stationary
state.
The fact that the distribution (54) is stationary for arbitrary values of

l leads to a multitude of other stationary distributions by differentiation of
(54) with respect to l. The distribution (57) is an example. In the Appendix
we comment on the relevance of these stationary states. From this section
the main message is:

• In the transformation from layer to layer, the total power of the
factors remains the same. This implies that we can select classes of pertur-
bations which transform into themselves.

• The sum of the coefficients of the terms is invariant under the
transformation.
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6. THE SLOWEST MODE

Let us now investigate how a deviation from P̃g(sF) will decay under
recursion. We take an initial distribution of the type

P̃(sF)=P̃g(sF)[1+DP̃(sF)]. (60)

In the spirit of the previous section we consider deviations of the form

DP̃(sF)=C
n
AnQ̃n(sF), (61)

where the Qn(sF) are products of two factors.

Q̃n(sF)=C
i

si
z+si

si+n
z+si+n

. (62)

It is clear from the previous Section that a DP̃(sF) of the form (61) is
after the transformation again a sum over the Q̃n(sF)

DP̃Œ(sF)=C
n
A −n Q̃n(sF). (63)

The transformed coefficients A −n are expressed in terms of the An of the
previous layer, using the formulae of the previous section, as

A −n=
1
z2

C
a, aŒ
An+a−aŒ+gnA0. (64)

On purpose we have chosen the same notation for the coefficients in the
representation (61) and in Section 4 for the correlations in the forces. As
one sees from comparing (64) with (35) and (31) the coefficients in both
cases obey exactly the same recursion relation. This means that we can take
over the conclusions of Section 4. The first one is that we can construct a
stationary state of the form

Ag
n=B 11+

1
z
dn, 0 2 . (65)

The nature of this stationary state, having long-ranged correlations, will be
discussed in the Appendix. The other relevant conclusion concerns the case
where only A (0)0 ] 0. This is a minimal disturbance of the stationary state
with only a modification of the single-site probability distribution and no
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correlations between sites.4 This is precisely the same initial condition as

4 It is not a product distribution, but it can be seen as the linearization of a product distribution.

for the case of the second moment starting with an uncorrelated initial
state. Thus the development of this deviation (61) is exactly the same as
that of the second moment of an arbitrary deviation from the stationary
state. The difference is that we now have the development of the full force
distribution. Projecting this joint distribution onto a single-site distribution,
by putting all si=0 except for one, one finds

p̃ (l)(s)=p̃g(s)11+A(l)0
s2

(z+s)2
2 . (66)

So on the level of the single-site distribution the shape of the deviation
remains invariant, but the amplitude decays as A (l)0 ’ l (1−d)/2. This means
that not only the second moment, but the whole single-site distribution
relaxes towards the stationary state (11) with a characteristic shape of the
single-site distribution given by (66).

7. HIGHER MODES

In this section we show that higher moments lead to faster modes. Let
us start by looking at the third moment of the forces. The linearity of the
force relation (2) guarantees that the third moments transform as a closed
set

Ofjfj+nfj+mPŒ

= C
a, aŒ, aœ

1F DqF qaj−a qaŒj+n−aŒ qaœj+m−aœ 2 Ofj−a fj+n−aŒ fj+m−aœP. (67)

The q integral is complicated but elementary, with several exceptional cases
due the equality of the lower indices. The general trend is however clear.
One gets a relation of the form

Ofjfj+nfj+mPŒ=
1
z3

C
a, aŒ, aœ

Ofj−afj+n−aŒfj+m−aœP+correction terms. (68)

The correction terms refer to the cases where the indices j, j+n and j+m
are either equal or nearest neighbors.
Consider now the class of uncorrelated distributions which coincide

with the stationary state (11) up to the second moment but start to deviate
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at the level of the third moment. The difference of the third order corre-
lations with respect to the stationary state then only has a value for
n=m=0. Such a disturbance gradually spreads over the 2(d−1) dimen-
sional space of the indices n and m. The decay rate is therefore as l (1−d)

which is faster than the l (1−d)/2 of the slowest mode. The correction terms in
(68) mildly modify the spreading of the correlations described by the first
term on the right hand side of (68). They do no change the power of the
decay but change the amplitude in front of the power.
The same story holds for the construction of the higher modes. By

further differentiation of relation (58) one derives the transformation law
of the functions which have 3 factors of the type si/(z+si) extra over the
stationary state. Such functions do not modify the normalisation, the mean
force and the second moment and therefore couple to the decay of the third
moment as we have described above. On the level of the single-site distri-
bution the mode takes the form

p̃(s)=p̃g(s)51+B(l)0, 0 1
s
z+s
236 , (69)

with the B (l)0, 0 ’ l
(1−d).

The generalization to higher moments and faster modes is evident. On
the level of the single site distribution it simply means a change of the
power of the last factor in (69). The coefficient in front of a power m
decays as l (1−d)(m−1)/2.
The question that emerges is: can one observe these modes in the

relaxation of an actual simulation? This question is related to the problem
of whether an arbitrary initial distribution can be decomposed as a super-
position of these modes. Already on the level of the single site distribution
one observes that our modes do not form a complete set in the mathemati-
cal sense. All modes start with a power f (z−1) in the force distribution;
hence the modes form a poor basis for the small f behavior. Nevertheless,
the modes that we have constructed do describe the asymptotic decay. We
should realize that before the asymptotic regime sets in, a fast process takes
place. If we start out with a distribution with a finite probability density for
small forces, this probability will be supressed rapidly in the region of small
forces by the recursion relation, due to the available phase space. For a
small resultant force f −j to occur, all the components q

a
j−a have to be small.

Already after one recursion step, a finite probability density (in the single-
site distribution) will be replaced by a probability density starting as fz−1

(modulo logarithmic factors, which move to higher orders in the next
recursion steps). Thus after a few steps, the decay of the probability distri-
bution can be well described by the above constructed modes.
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Fig. 3. The slowest mode for the triangular packing at l=50 and the fcc packing at l=10.

In order to test the mode picture we have performed numerical simu-
lations on a 2-dimensional triangular lattice and a 3-dimensional fcc lattice.
We took the initial condition fi=1 for each site i, which also means
Of2i P=1. This initial distribution is a substantial deviation from the
stationary state (11). In Fig. 3 we have compared the observed single-site
distributions with the analytical results. In the first figure, we show the
single-site force distribution of the l=50th layer in the triangular packing,
after subtracting pg(f). The analytical curve is the slowest mode (66),
whose amplitude has been computed from the recursive scheme (64), with
the initial value A (0)0 =−1, corresponding to the initial second moment
Of2i P=1. As the comparison does not involve any free parameters the
correspondence is remarkable; the more so since the deviations bear the
signature of the next slowest mode (69). In the second figure, the simula-
tion data is shown for the fcc packing with the same initial distribution and
l=10. In line with the fact that the modes decay faster in a higher dimen-
sion, the agreement is even more impressive.

8. DISCUSSION

We have calculated the decay towards the stationary state (11) of
initial force distributions which have short-ranged force correlations and a
sufficiently sharp distribution of the total force (19). Since we can fix the
average force, the relaxation occurs for the second and higher order force
correlations. The short-ranged correlations become longer ranged while
their amplitudes diminish in a diffusion process in correlation space. This
accounts for the slow algebraic relaxation of the second moments of the
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force. These moments also dictate the slowest modes of relaxation of
the full distribution function. For arbitrary initial conditions we find the
asymptotic form (66) for the relaxation of the single-site distribution. We
have focussed on the triangular and the fcc packing as examples, but the
results can be easily extended to other packings and other connections
between layers. The number of connections z determines the form of the
stationary state and the decay modes. The dimension of the system dete-
mines the relaxation powers of the modes.
The stationary state (11) is not the only stationary state as can already

be seen from the fact that each initial distribution of the total force stays
invariant. If we exclude, however, long-ranged correlations in the initial
state and restrict ourselves to sharp distributions of the total force in the
sense of (19), the stationary state can only marginally differ from (11) as is
explained in the appendix.
It is not remarkable that the product stationary state (11) results also

from a mean-field approximation. However, it is interesting that the single-
site distributions (66) etc. are also found as modes of the mean-field
approximation. Yet it would be misleading to conclude that the mean-field
approximation is accurate. The mean-field modes decay exponentially as a
consequence of ignoring correlations in the system. An initially uncorre-
lated state develops correlations which get longer in range and smaller in
amplitude. The long persistence of these correlations explains why the
mean-field approximation does not accurately describe the relaxation.
In our calculations we have relied heavily on the mathematical simpli-

fications due to the uniform distribution of the q variables. The slow
approach to the stationary state is a robust property which holds for arbi-
trary q distributions. In fact it is easy to show that the decay of the second
moments for an arbitrary q distribution is similar to what has been found
in Section 4 (see also refs. 3 and 9). However, there is as yet no general
procedure to construct the explicit form of the stationary state and the slow
modes, as this is based on (53). Using a generalization of this identity, one
can show that there is a one parameter set of q distributions for which the
stationary state is uncorrelated. (5, 9) For these distributions the construction
of the modes is completely similar to what we have done for the uniform
distribution. All q distributions that do not fall into this class will give rise
to force correlations, albeit in higher moments than the second. (9)

APPENDIX A: OTHER STATIONARY STATES

There are two ways to investigate the occurrence of a stationary state.
We can do this on the level of the moments or of the full probability dis-
tribution. As the moments are simpler we consider first the second
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moment. We take the total force distribution to be sharp according to (19).
Imposing this condition on the stationary state (33) gives for the coefficient C

C=
1+c/N
1+1/zN

4 1+
c−1/z
N
. (70)

So indeed the stationary values (33) approach those of (11) in the limit
NQ..
Similar arguments can be given for the stationary state (57) following

from the scale invariance of the transformation. This state does not corre-
spond to a good distribution as its norm is zero. This problem can be
avoided by adding P̃g(sF) and allowing for a different scale, i.e.,

P̃g
1 (sF)=P̃

g(lsF)11+AC
i

si
1+lsi
2 . (71)

Unlike the slowest mode, this particular addition to P̃g(sF) does affect the
average force. Rescaling the forces such that OfiP=1, requires lz=1−A.
The second moments of (71) are

Ofifi+nP=(1−A2)
z+d0, n
z
. (72)

Thus the distribution is sharp in the sense of Eq. (19) if

A2 4 (1/z−c)/N, (73)

which means that A is O(1/`N) (or 0 for c=1/z corresponding to the
stationary state (11)). Thus the stationary state (71) becomes equal to the
stationary state (11) in the thermodynamic limit. The long-ranged correla-
tions are indeed of the order 1/N.
The same conclusion can be drawn with respect to the stationary state

corresponding to (65) which reads

P̃g
2 (sF)=P̃

g(sF)11+BC
n
Qn(sF)+

B
z
Q0(sF)2 . (74)

The allowed values for B follow again from computing OF2P for the dis-
tribution (74) and equating this with the expression (19)

(1+2B/z2)(N2+N/z)=N2+cN or B 4 z2(c−1/z)/2N. (75)
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So B turns out to be O(1/N) showing that the stationary state implied by
(65) is indeed only a marginal deviation from the stationary state (11). It
has long-ranged correlations of the order of 1/N. Similar arguments can be
given for the other stationary states following from the scale invariance of
the transformation. For finite systems such states are different, but in the
thermodynamic limit they all merge in the stationary state (11) if we insist
on the sharpness of the total force distribution.
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